ELEVATOR SYSTEMS

APPLYING NEWTON'S LAWS OF MOTION

PowerPoint Presentation By: Jay Gregorio, AHS

Objectives

- identify the forces acting on the elevator systems;
- use vector arrows to represent magnitude and direction of the forces acting on the system;
- differentiate true weight from apparent weight;
- find the magnitude of the net force and acceleration in elevator systems;

Differentiate "true weight" from "apparent weight".

True weight - "actual weight".

Apparent weight - force
experienced by an object as a
result of all the forces acting
on the object, giving it an
acceleration.

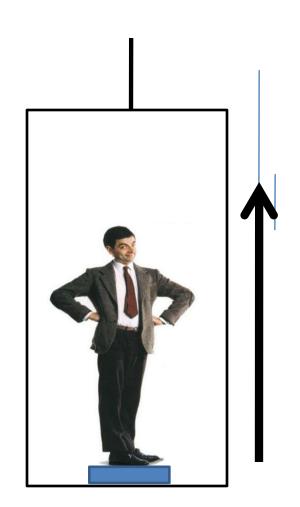
CASE 1: No Acceleration

What are the possible conditions?

- at rest
- moving at a constant velocity

Therefore,

$$F_{net} = 0$$

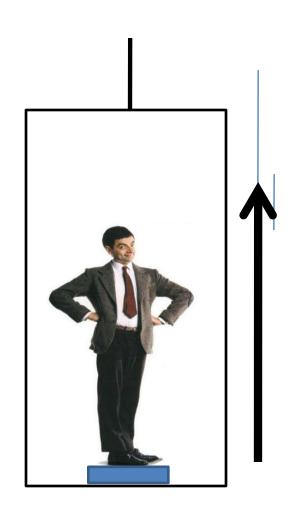


CASE 2: Going Up, Speeding Up

Compare the true weight from apparent weight. $F_N > F_g$

Determine whether Mr. Bean feels heavier or lighter. (heavier)

What is the apparent weight? $F_N = m(g + a)$



CASE 3: Going Up, Slowing Down

Compare the true weight from apparent weight. $F_N < F_g$

Determine whether Mr. Bean feels heavier or lighter. (lighter)

What is the apparent weight? $F_N = m(g - a)$

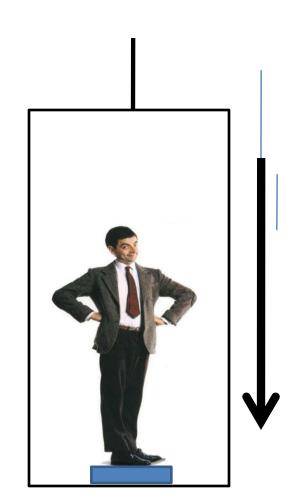


CASE 4: Going Down, Speeding Up

Compare the true weight from apparent weight. $F_N < F_g$

Determine whether Mr. Bean feels heavier or lighter. (lighter)

What is the apparent weight? $F_N = m(g - a)$



CASE 5: Going Down, Slowing Down

Compare the true weight from apparent weight. $F_N > F_g$

Determine whether Mr. Bean feels heavier or lighter. (heavier)

What is the apparent weight? $F_N = m(g + a)$

CASE 6: When the cable breaks...

Compare the true weight from apparent weight. The only force acting on the body is F_g (true weight).

What is the apparent weight?

$$F_N = 0$$

